Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Methods Mol Biol ; 2515: 171-191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776352

RESUMO

Emerging evidence suggests that neurodegeneration is directly linked to dysfunction of cytoskeleton; however, visualizing the organization of cytoskeletal structures in brain tissues remains challenging due to the limitation of resolution of light microscopy. Superresolution imaging overcomes this limitation and resolves subcellular structures below the diffraction barrier of light (20-200 nm), while retaining the advantages of fluorescent microscopy such as simultaneous visualization of multiple proteins and increased signal sensitivity and contrast. However, superresolution imaging approaches have been largely limited to very thin samples such as cultured cells growing as a single monolayer. Analysis of thicker tissue sections represents a technical challenge due to high background fluorescence and quality of the tissue preservation methods. Among superresolution microscopy approaches, structured illumination microscopy is one of the most compatible methods for analyzing thicker native tissue samples. We have developed a methodology that allows maximal preservation and quantitative analyses of cytoskeletal networks in tissue sections from a rodent brain. This methodology includes a specialized fixation protocol, tissue preparation, and image acquisition procedures optimized for the characterization of subcellular cytoskeletal structures using superresolution with structured illumination microscopy.


Assuntos
Encéfalo , Microtúbulos , Microscopia de Fluorescência/métodos , Proteínas
3.
Front Cell Neurosci ; 15: 691711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552469

RESUMO

The subfornical organ (SFO) is a sensory circumventricular organ located along the anterodorsal wall of the third ventricle. SFO lacks a complete blood-brain barrier (BBB), and thus peripherally-circulating factors can penetrate the SFO parenchyma. These signals are detected by local neurons providing the brain with information from the periphery to mediate central responses to humoral signals and physiological stressors. Circumventricular organs are characterized by the presence of unique populations of non-neuronal cells, such as tanycytes and fenestrated endothelium. However, how these populations are organized within the SFO is not well understood. In this study, we used histological techniques to analyze the anatomical organization of the rat SFO and examined the distribution of neurons, fenestrated and non-fenestrated vasculature, tanycytes, ependymocytes, glia cells, and pericytes within its confines. Our data show that the shell of SFO contains non-fenestrated vasculature, while fenestrated capillaries are restricted to the medial-posterior core region of the SFO and associated with a higher BBB permeability. In contrast to non-fenestrated vessels, fenestrated capillaries are encased in a scaffold created by pericytes and embedded in a network of tanycytic processes. Analysis of c-Fos expression following systemic injections of angiotensin II or hypertonic NaCl reveals distinct neuronal populations responding to these stimuli. Hypertonic NaCl activates ∼13% of SFO neurons located in the shell. Angiotensin II-sensitive neurons represent ∼35% of SFO neurons and their location varies between sexes. Our study provides a comprehensive description of the organization of diverse cellular elements within the SFO, facilitating future investigations in this important brain area.

4.
Cell Rep ; 34(11): 108866, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730577

RESUMO

High dietary salt increases arterial pressure partly through activation of magnocellular neurosecretory cells (MNCVP) that secrete the antidiuretic and vasoconstrictor hormone vasopressin (VP) into the circulation. Here, we show that the intrinsic and synaptic excitation of MNCVP caused by hypertonicity are differentially potentiated in two models of salt-dependent hypertension in rats. One model combined salty chow with a chronic subpressor dose of angiotensin II (AngII-salt), the other involved replacing drinking water with 2% NaCl (salt loading, SL). In both models, we observed a significant increase in the quantal amplitude of EPSCs on MNCVP. However, model-specific changes were also observed. AngII-salt increased the probability of glutamate release by osmoreceptor afferents and increased overall excitatory network drive. In contrast, SL specifically increased membrane stiffness and the intrinsic osmosensitivity of MNCVP. These results reveal that dietary salt increases the excitability of MNCVP through effects on the cell-autonomous and synaptic osmoresponsiveness of MNCVP.


Assuntos
Neurônios/metabolismo , Osmose , Cloreto de Sódio na Dieta/efeitos adversos , Vasopressinas/metabolismo , Angiotensina II , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipertensão/patologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Probabilidade , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
5.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32209611

RESUMO

Magnocellular neurosecretory cells (MNCs) are intrinsically osmosensitive and can be activated by increases in blood osmolality, triggering the release of antidiuretic hormone vasopressin (VP) to promote water retention. Hence, the activity of magnocellular VP neurons is one of the key elements contributing to the regulation of body fluid homeostasis in healthy organisms. Chronic exposure to high dietary salt leads to excessive activation of VP neurons, thereby elevating levels of circulating VP, which can cause increases in blood pressure contributing to salt-dependent hypertension. However, the molecular basis underlying high-salt diet-induced hyperactivation of magnocellular VP neurons remains not fully understood. Previous studies suggest that magnocellular neurosecretory neurons contain a subcortical layer of actin filaments and pharmacological stabilization of this actin network potentiates osmotically-induced activation of magnocellular neurons. Using super-resolution imaging in situ, we investigated the organization of the actin cytoskeleton in rat MNCs under normal physiological conditions and after a chronic increase in blood osmolality following 7 d of salt-loading (SL). We found that, in addition to the subcortical layer of actin filaments, magnocellular VP neurons are endowed with a unique network of cytoplasmic actin filaments throughout their somata. Moreover, we revealed that the density of both subcortical and cytoplasmic actin networks in magnocellular VP neurons is dramatically increased following SL. These results suggest that increased osmo-responsiveness of VP neurons following chronic exposure to high dietary salt may be mediated by the modulation of unique actin networks in magnocellular VP neurons, possibly contributing to elevated blood pressure in this condition.


Assuntos
Cloreto de Sódio na Dieta , Núcleo Supraóptico , Citoesqueleto de Actina/metabolismo , Animais , Neurônios/metabolismo , Ratos , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo
6.
J Neuroendocrinol ; 32(2): e12817, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778225

RESUMO

Magnocellular vasopressin (VP) neurones are activated by increases in blood osmolality, leading to the secretion of VP into the circulation to promote water retention in the kidney, thus constituting a key mechanism for the regulation of body fluid homeostasis. However, chronic high salt intake can lead to excessive activation of VP neurones and increased circulating levels of VP, contributing to an elevation in blood pressure. Multiple extrinsic factors, such as synaptic inputs and glial cells, modulate the activity of VP neurones. Moreover, magnocellular neurones are intrinsically osmosensitive, and are activated by hypertonicity in the absence of neighbouring cells or synaptic contacts. Hypertonicity triggers cell shrinking, leading to the activation of VP neurones. This cell-autonomous activation is mediated by a scaffold of dense somatic microtubules, uniquely present in VP magnocellular neurones. Treating isolated magnocellular neurones with drugs modulating microtubule stability modifies the sensitivity of neuronal activation in response to acute hypertonic stimuli. However, whether the microtubule network is altered in conditions associated with enhanced neuronal activation and increased VP release, such as chronic high salt intake, remains unknown. We examined the organisation of microtubules in VP neurones of the supraoptic and paraventricular hypothalamic nuclei (SON and PVN, respectively) of rats subjected to salt-loading (drinking 2% NaCl for 7 days). Using super-resolution imaging, we found that the density of microtubules in magnocellular VP neurones from the SON and PVN was significantly increased, whereas the density and organisation of microtubules remain unchanged in other hypothalamic neurones, as well as in neurones from other brain areas (e.g., hippocampus, cortex). We propose that the increase in microtubule density in magnocellular VP neurones in salt-loading promotes their enhanced activation, possibly contributing to elevated blood pressure in this condition.


Assuntos
Microtúbulos/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Cloreto de Sódio/administração & dosagem , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Animais , Masculino , Concentração Osmolar , Ratos Wistar , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...